Refine Your Search

Topic

Author

Search Results

Technical Paper

Corner Design in Deep Drawn Rectangular Parts

1997-02-24
970437
The influence of die corner geometry on the attainable draw depth of rectangular parts was investigated using 3-D FEM and optimum rectangular blanks. Axisymmetric cup analysis was not adequate because a corner assist effect promotes corner draw. Guidelines for selecting corner radius were developed and the sensitivities of the maximum part depth to other process variables, such as drawbead restraint force; die clearance gap; friction coefficient; strain rate sensitivity; material anisotropy; and strain hardening exponent, were simulated. The results are much more conservative than handbook rules, which to not to take into account the details of blank size, drawbead restraint, die geometry, material properties, and friction.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

Design of a Hybrid Exhaust Silencing System for a Production Engine

2005-05-16
2005-01-2349
A prototype hybrid exhaust silencing system consisting of dissipative and reactive components is designed based on the boundary element method (BEM) with a specific emphasis on its acoustic performance as evaluated relative to a production system. The outer dimensions of the prototype system are comparable to its production counterpart, which has two silencers connected by a pipe. The predicted transmission loss by BEM for the prototype is compared with the experimental results in an impedance tube for both the prototype and production hardware, providing a design guidance for the former. The sound pressure levels measured at the tailpipe exit during the engine ramp-up experiments in a dynamometer laboratory are presented to compare the two systems, providing the final assessment.
Technical Paper

Vehicle Characterization Through Pole Impact Testing, Part II: Analysis of Center and Offset Center Impacts

2005-04-11
2005-01-1186
The severity of an impact in terms of the acceleration in the occupant compartment is dependent not only on the change in vehicle velocity, but also the time for the change in velocity to occur. These depend on the geometry and stiffness of both the striking vehicle and struck object. In narrow-object frontal impacts, impact location can affect the shape and duration of the acceleration pulse that reaches the occupant compartment. In this paper, the frontal impact response of a full-sized pickup to 10 mile per hour and 20 mile per hour pole impacts at the centerline and at a location nearer the frame rails is compared using the acceleration pulse shape, the average acceleration in the occupant compartment, and the residual crush. A bilinear curve relating impact speed to residual crush is developed.
Technical Paper

Experimental Evaluation of Fishhook Maneuver Performance of a Kinetic Suspension System

2005-04-11
2005-01-0392
Kinetic Pty Ltd and Tenneco Automotive have developed a passive suspension system called a Kinetic system. The motivation for the design of the system is discussed, and the function of the system is explained. The system improves handling, stability, and ride by passively decoupling roll stiffness from articulation stiffness and roll damping from bounce damping. Improved stability is evaluated by conducting NHTSA's Roll Rate Feedback Fishhook tests on a small SUV equipped with the Kinetic system. Results of the testing are presented, and benefits to rollover are discussed.
Technical Paper

Integration of an Adaptive Control Strategy on an Automated Steering Controller

2005-04-11
2005-01-0393
This paper describes an adaptive control strategy for improving the steering response of an automated vehicle steering controller. In order to achieve repeatable dynamic test results, precise steering inputs are necessary. This strategy provides the controller tuning parameters optimized for a particular vehicle's steering system. Having the capability to adaptively tune the steering controller for any vehicle installation provides an easy method for obtaining precise steering inputs for a wide range of vehicles, from small off-road utility vehicles to passenger vehicles to heavy trucks. The S.E.A. Ltd. Automated Steering Controller (ASC) is used exclusively in conducting this research. By recording the torque input to the steering system by the steering controller and the resulting steering angle during only a single test, the ASC is able to characterize the steering system of the test vehicle and create a computer model with appropriate parameters.
Technical Paper

Development of a Computer Controlled Automated Steering Controller

2005-04-11
2005-01-0394
This paper describes the design and development of the hardware, electronics, and software components of a state-of-the-art automated steering controller, the SEA, Ltd. ASC. The function of the ASC is to input to a vehicle virtually any steering profile with both high accuracy and repeatability. The ASC is designed to input profiles having steering rates and timing that are in excess of the limits of a human driver. The ASC software allows the user to specify steering profiles and select controller settings, including motor controller gains, through user-interface windows. This makes it possible for the test driver to change steering profiles and settings immediately after running any test maneuver. The motor controller used in the ASC offers self-contained signal input, output, and data storage capabilities. Thus, the ASC can operate as a standalone steering machine or it can be incorporated into typical existing, on-vehicle data acquisition systems.
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Journal Article

Effect of the Tooth Surface Waviness on the Dynamics and Structure-Borne Noise of a Spur Gear Pair

2013-05-13
2013-01-1877
This article studies the effects of tooth surface waviness and sliding friction on the dynamics and radiated structure-borne noise of a spur gear pair. This study is conducted using an improved gear dynamics model while taking into account the sliding frictional contact between meshing teeth. An analytical six-degree-of-freedom (6DOF) linear time varying (LTV) model is developed to predict system responses and bearing forces. The time varying mesh stiffness is calculated using a gear contact mechanics code. A Coulomb friction model is used to calculate the sliding frictional forces. Experimental measurements of partial pressure to acceleration transfer functions are used to calculate the radiated structure-borne noise level. The roles of various time-varying parameters on gear dynamics are analyzed (for a specific example case), and the predictions from the analytical model are compared with prior literature.
Technical Paper

Effects of Loading on Vehicle Handling

1998-02-23
980228
This paper explores the effects of changes in vehicle loading on vehicle inertial properties (center-of-gravity location and moments of inertia values) and handling responses. The motivation for the work is to gain better understanding of the importance vehicle loading has in regard to vehicle safety. A computer simulation is used to predict the understeer changes for three different vehicles under three loading conditions. An extension of this loading study includes the effects of moving occupants, which are modeled for inclusion in the simulation. A two-mass model for occupants/cargo, with lateral translational and rotational degrees of freedom, has been developed and is included in the full vehicle model. Using the simulation, the effects that moving occupants have on vehicle dynamics are studied.
Technical Paper

Repeatability and Bias Study on the Vehicle Inertia Measurement Facility (VIMF)

2009-04-20
2009-01-0447
Representative vehicle inertial characteristics are important parameters for the development of motor vehicles and the proper operation of on-board systems. The Vehicle Inertia Measurement Facility (VIMF) measures vehicle center of gravity location, principal moments of inertia, and the roll/yaw product of inertia. It is important to understand the VIMF’s accuracy and repeatability, as well as the underlying methodology and assumptions, when performing tests or using the results of the test. This study reports on a repeatability analysis performed at the lower and upper limits of the VIMF. Each test performed is a complete drive-on/drive-off test. The test sequence involves the repeatability evaluation of several different machine configurations. Ten complete tests are performed for each vehicle. To better address the possibility of measurement bias, the design and verification of a calibration fixture for inertial characteristics is presented.
Technical Paper

Control Oriented Model of Cabin-HVAC System in a Long-Haul Trucks for Energy Management Applications

2022-03-29
2022-01-0179
Super Truck II is a 48V mild hybrid class 8 truck with an all auxiliary loads powered purely by the battery pack. Electric Heating Ventilation and Air Conditioning (HVAC) load is the most prominent battery load during the hotel period, when the truck driver is resting inside the sleeper. For the PACCAR Super Truck II (ST-II) project a 48 V battery system provides the required power during the hotel period. A cabin-HVAC model estimates the electric load on the 48V battery system, allowing the control system to implement an efficient energy management strategy that avoids engine idling during the hotel period. The thermal model accounts for the sun load due to the time of day and the geographic location of the truck during the hotel period. The cabin-HVAC model has two parts. First, a grey box model with two heat exchangers (Condenser and Evaporator) working in unison with refrigerant mass flow rate as an input and HVAC load as an output.
Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Suspension Parameter Measurement Using Side-Pull Test To Enhance Modeling of Vehicle Roll

1999-03-01
1999-01-1323
This paper describes a new laboratory test facility for measuring suspension parameters that affect rollover. The Side-Pull mechanism rolls the test vehicle through a cable attached rigidly at its center of gravity (CG). Changes in wheel camber and wheel steer angles are measured as a function of body roll angle. The roll test simulates a steady-state cornering. Thus, both compliance and kinematic forces are fed simultaneously to the vehicle as they would be applied in a real cornering situation. The lateral load transfer, and roll angle as a function of simulated lateral acceleration is determined. The Side-Pull Roll Measurement has advantages over the conventional roll tests where the rolling force couple is applied vertically. The Side-Pull mechanism rolls the vehicle in a unrestricted way with horizontal forces applied at the tire / pad contact and the CG location. Thus, the measurements take into account coupling of compliance with roll.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Use of Robust DOB/CDOB Compensation to Improve Autonomous Vehicle Path Following Performance in the Presence of Model Uncertainty, CAN Bus Delays and External Disturbances

2018-04-03
2018-01-1086
Autonomous vehicle technology has been developing rapidly in recent years. Vehicle parametric uncertainty in the vehicle model, variable time delays in the CAN bus based sensor and actuator command interfaces, changes in vehicle sped, sensitivity to external disturbances like side wind and changes in road friction coefficient are factors that affect autonomous driving systems like they have affected ADAS and active safety systems in the past. This paper presents a robust control architecture for automated driving systems for handling the abovementioned problems. A path tracking control system is chosen as the proof-of-concept demonstration application in this paper. A disturbance observer (DOB) is embedded within the steering to path error automated driving loop to handle uncertain parameters such as vehicle mass, vehicle velocities and road friction coefficient and to reject yaw moment disturbances.
X